
Switch Case Statements

The switch statement in C is an alternate to if-else-if ladder statement which

allows us to execute multiple operations for the different possibles values of a

single variable called switch variable.

A switch statement allows a variable to be tested for equality against a list of

values. Each value is called a case, and the variable being switched on is checked

for each switch case.

The syntax of switch statement in c language

is given below:

1. switch(expression)

2. {

3. case value1:

4. //code to be executed;

5. break; //optional

6. case value2:

7. //code to be executed;

8. break; //optional

9.

10. default:

11. //code to be executed if all cases are not matched;

12. }

The following rules apply to a switch statement −

1. The switch expression must be of an integer or character type.

2. You can have any number of case statements within a switch. Each case is

followed by the value to be compared to and a colon.

3. When the variable being switched on is equal to a case, the statements

following that case will execute until a break statement is reached.

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/c-switch
https://www.javatpoint.com/c-switch

4. The break statement in switch case is not must. It is optional. If there is no

break statement found in the case, all the cases will be executed present after

the matched case. It is known as fall through the state of C switch statement.

5. When a break statement is reached, the switch terminates, and the flow of

control jumps to the next line following the switch statement.

6. A switch statement can have an optional default case, which must appear at

the end of the switch. The default case can be used for performing a task when

none of the cases is true. No break is needed in the default case.

Example

#include <stdio.h>

int main () {

 /* local variable definition */

 char grade = 'B';

 switch(grade) {

 case 'A' :

 printf("Excellent!\n");

 break;

 case 'B' :

 case 'C' :

 printf("Well done\n");

 break;

 case 'D' :

 printf("You passed\n");

 break;

 case 'F' :

 printf("Better try again\n");

 break;

 default :

 printf("Invalid grade\n");

 }

 printf("Your grade is %c\n", grade);

 return 0;

}

When the above code is compiled and executed, it produces the following result

Well done

Your grade is B

Switch case example 2

#include <stdio.h>

int main()

{

 int x = 10, y = 5;

 switch(x>y && x+y>0)

 {

 case 1:

 printf("hi");

 break;

 case 0:

 printf("bye");

 break;

 default:

 printf(" Hello bye ");

 }

}

Output

hi

C Switch statement is fall-through

In C language, the switch statement is fall through; it means if you don't use a

break statement in the switch case, all the cases after the matching case will be

executed.

Let's try to understand the fall through state of switch statement by the example

given below.

https://www.javatpoint.com/c-switch
https://www.javatpoint.com/c-switch
https://www.javatpoint.com/c-switch
https://www.javatpoint.com/c-switch
https://www.javatpoint.com/c-switch
https://www.javatpoint.com/c-switch

1. #include<stdio.h>

2. int main(){

3. int number=0;

4.

5. printf("enter a number:");

6. scanf("%d",&number);

7.

8. switch(number){

9. case 10:

10. printf("number is equal to 10\n");

11. case 50:

12. printf("number is equal to 50\n");

13. case 100:

14. printf("number is equal to 100\n");

15. default:

16. printf("number is not equal to 10, 50 or 100");

17. }

18. return 0;

19. }

Output

enter a number:10

number is equal to 10

number is equal to 50

number is equal to 100

number is not equal to 10, 50 or 100

Nested switch case statement

We can use as many switch statement as we want inside a switch statement. Such type

of statements is called nested switch case statements. Consider the following example.

1. #include <stdio.h>

2. int main () {

3.

4. int i = 10;

5. int j = 20;

6.

7. switch(i) {

8.

9. case 10:

10. printf("the value of i evaluated in outer switch: %d\n"

,i);

11. case 20:

12. switch(j) {

13. case 20:

14. printf("The value of j evaluated in nested switch:

%d\n",j);

15. }

16. }

17.

18. printf("Exact value of i is : %d\n", i);

19. printf("Exact value of j is : %d\n", j);

20.

21. return 0;

22. }

Output

the value of i evaluated in outer switch: 10

The value of j evaluated in nested switch: 20

Exact value of i is : 10

Exact value of j is : 20

Practice Problems:

1. Write a Menu Driven Program to display the month

name by accepting the month number from the user.

2. Write a Program to display the class according to the

marks scored by the students.

The Marks scored is taken as input and the class is

displayed according to the following range.

70-100 Distinction

60-69 First Class

50-59 Second Class

40-49 Pass Class

0-39 Fail

3. Write a Menu Driven Program to perform

add/subtract/multiply/divide/modulus based on the

user’s choice.

