# C Data Types

In C programming, data types are declarations for variables. This determines the type and size of data associated with variables. For example,

#### int myVar;

Here, myvar is a variable of int (integer) type. The size of int is 4 bytes.

### **Basic types**

Here's a table containing commonly used types in C programming for quick access.

| Туре         | Size (bytes)          | Format Specifier |
|--------------|-----------------------|------------------|
| int          | at least 2, usually 4 | %d,%i            |
| char         | 1                     | %с               |
| float        | 4                     | %f               |
| double       | 8                     | %lf              |
| short int    | 2 usually             | %hd              |
| unsigned int | at least 2, usually 4 | %u               |
| long int     | at least 4, usually 8 | %ld,%li          |

| Туре                   | Size (bytes)                  | Format Specifier |
|------------------------|-------------------------------|------------------|
| long long int          | at least 8                    | %11d,%11i        |
| unsigned long int      | at least 4                    | %lu              |
| unsigned long long int | at least 8                    | %11u             |
| signed char            | 1                             | %с               |
| unsigned char          | 1                             | %с               |
| long double            | at least 10, usually 12 or 16 | %Lf              |

## int

Integers are whole numbers that can have both zero, positive and negative values but no decimal values. For example, 0, -5, 10 We can use int for declaring an integer variable.

#### int id;

Here, id is a variable of type integer.

You can declare multiple variables at once in C programming. For example,

## int id, age;

The size of int is usually 4 bytes (32 bits). And, it can take 2<sup>32</sup> distinct states from -2147483648 to 2147483647.

# float and double

float and double are used to hold real numbers.

float salary;
double price;

In C, floating-point numbers can also be represented in exponential. For example,

float normalizationFactor = 22.442e2;

What's the difference between float and double?

The size of float (single precision float data type) is 4 bytes. And the size of double (double precision float data type) is 8 bytes.

## char

Keyword char is used for declaring character type variables. For example,

char test = 'h';

The size of the character variable is 1 byte.

### void

void is an incomplete type. It means "nothing" or "no type". You can think of void as **absent**.

For example, if a function is not returning anything, its return type should be void.

Note that, you cannot create variables of void type.

## short and long

If you need to use a large number, you can use a type specifier long. Here's how:

long a; long long b; long double c;

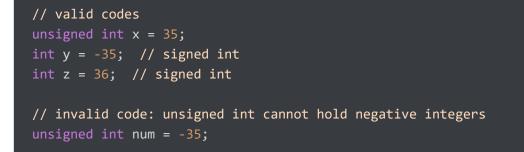
Here variables a and b can store integer values. And, c can store a floatingpoint number.

If you are sure, only a small integer ([-32,767, +32,767] range) will be used,

you can use short.

short d;

You can always check the size of a variable using the sizeof() operator.


```
#include <stdio.h>
int main() {
    short a;
    long b;
    long long c;
    long double d;

    printf("size of short = %d bytes\n", sizeof(a));
    printf("size of long = %d bytes\n", sizeof(b));
    printf("size of long long = %d bytes\n", sizeof(c));
    printf("size of long double= %d bytes\n", sizeof(d));
    return 0;
}
Run Code
```

# signed and unsigned

In C, signed and unsigned are type modifiers. You can alter the data storage of a data type by using them:

- signed allows for storage of both positive and negative numbers
- unsigned allows for storage of only positive numbers
   For example,



Here, the variables x and num can hold only zero and positive values because we have used the unsigned modifier.

Considering the size of int is 4 bytes, variable y can hold values from -  $2^{31}$  to  $2^{31}-1$ , whereas variable x can hold values from 0 to  $2^{32}-1$ .

## **Derived Data Types**

Data types that are derived from fundamental data types are derived types. For example: arrays, pointers, function types, structures, etc.

We will learn about these derived data types in later tutorials.

- bool type
- Enumerated type
- Complex types