
60 Programming in C

 According to most C literature, the valid range for
fl oats is 10–38 to 1038. But, how is such an odd range used?
Well, the answer lies in the IEEE representation. Since the
exponent of a fl oat in IEEE format is stored with a positive
bias of 127, the smallest positive value that can be stored
in a fl oat variable is 2–127, which is approximately 1.175 ×
10–38. The largest positive value is 2128, which is about 3.4
× 1038. Similarly, for a double variable the smallest possible
value is 2–1023, which is approximately 2.23 × 10–308. The
largest positive value that can be held in a double variable
is 21024, which is approximately 1.8 × 10308.
 There is one more quirk. After obtaining the IEEE
format for a fl oat, when the time comes to actually store it
in memory, it is stored in the reverse order. That is, if the
user calls the four-byte IEEE form as ABCD, then while
storing in memory it is stored in the form DCBA. This
can be understood with an example. Suppose the fl oating
point number in question is 5.375. Its IEEE representation
is 0100000010101100000000000000 0000. Expressed in
Hex this is 40 AC 00 00. While storing this in memory, it
is stored as 00 00 AC 40.
 The representation of a long double (10-byte entity)
is also similar. The only difference is that unlike fl oat and
double, the most signifi cant bit of the normalized form is
specifi cally stored. In a long double, 1 bit is occupied by
the sign, 15 bits by the biased exponent (bias value 16383),
and 64 bits by the mantissa.

2.12 TOKEN
Tokens are the basic lexical building blocks of source
code. In other words, one or more symbols understood by
the compiler that help it interpret your code. Characters
are combined into tokens according to the rules of the
programming language. The compiler checks that the
tokens can be formed into legal strings according to the
syntax of the language.There are fi ve classes of tokens:
identifi ers, reserved words, operators, separators, and
constants.
An identifi er is a sequence of characters invented by
the programmer to identify or name a specifi c object
and name is formed by a sequence of letters, digits, and
underscores.
 Keywords are explicitly reserved words that have a strict
meaning as individual tokens to the compiler. They cannot
be redefi ned or used in other contexts. Use of variable
names with the same name as any of the keywords will
cause a compiler error.

 Operators are tokens used to indicate an action to be taken
(usually arithmetic operations, logical operations, bit
operations, and assignment operations). Operators can be
simple operators (a single character token) or compound
operators (two or more character tokens).
 Separators are tokens used to separate other tokens. Two
common kinds of separators are indicators of an end of an
instruction and separators used for grouping.
A constant is an entity that doesn’t change.
Say we have the following piece of code,

if(x<5)

 x = x + 2;
else
 x = x + 10;

Here the tokens that will be generated are
Keywords : if , else
Identifi er : x
Constants : 2, 10,5
Operators : +,=
Separator : ;

2.12.1 Identifi er

An identifi er or name is a sequence of characters invented
by the programmer to identify or name a specifi c object.
In C, variables, arrays, functions, and labels are named.
Describing them may help to learn something about the
character of the language since they are elements that C
permits the programmer to defi ne and manipulate. Some
rules must be kept in mind when naming identifi ers. These
are stated as follows.
 1. The fi rst character must be an alphabetic character

(lower-case or capital letters) or an underscore ‘_’.
 2. All characters must be alphabetic characters, digits,

or underscores.
 3. The fi rst 31 characters of the identifi er are signifi cant.

Identifi ers that share the same fi rst 31 characters may
be indistinguishable from each other.

 4. Cannot duplicate a key word. A keyword word is one
which has special meaning to C.

 Some examples of proper identifi ers are employee_
number, box_4_weight, monthly_pay, interest_per_annum,
job_number, and tool_4.
 Some examples of incorrect identifi ers are 230_item,
#pulse_rate, total~amount, /profi t margin, and ~cost_
per_item.

Basics of C 61

2.12.2 Keywords

 Keywords are the vocabulary of C. Because they are
special to C, one can’t use them for variable names.
 There are 32 words defi ned as keywords in C. These
have predefi ned uses and cannot be used for any other
purpose in a C program. They are used by the compiler to
compile the program. They are always written in lowercase
letters. A complete list of these keywords is given in
Table 2.7.

Table 2.7 Keywords in C

auto double int struct

break else long witch

case enum register typedef

char extern return union

const fl oat short unsigned

continue for signed void

default goto sizeof volatile

do if static while

 Several keywords were added in C89: const, enum,
signed, void and volatile. New in C99 are the keywords
inline, restrict, _Bool, _Complex and _Imaginary.

Table 2.8 Full set of keywords upto C99

auto enum restrict unsigned

break extern return void

case fl oat short volatile

char for signed while

const goto sizeof _Bool

continue if static _Complex

default inline struct _Imaginary

do int switch

double long typedef

else register union

 Note that compiler vendors (like Microsoft, Borland,
etc.) provide their own keywords apart from the ones
mentioned above. These include extended keywords like
near, far, asm, etc. Though it has been suggested by
the ANSI committee that every such compiler specifi c
keyword should be preceded by two underscores (as in
__asm), not every vendor follows this rule.

2.12.3 Constant

A constant is an explicit data value written by the
programmer. Thus, it is a value known to the compiler at
compiling time. The compiler may deal with this value in
any of several ways, depending on the type of constant
and its context. For example, the binary equivalent of the
constant may be inserted directly into the output code
stream. The value of the constant may be stored in a
special data area in memory. The compiler may decide to
use the constant’s value for its own immediate purpose,
e.g., to determine how much storage it should allocate to
a data array.
 C permits integer constants, fl oating-point constants,
character constants, and string constants. Figure 2.16
depicts the types of constants that C allows. An integer
constant consists of a sequence of digits. It is normally
interpreted as a decimal value. Thus, 1, 25, and 23456 are
all decimal integer constants.
 A literal integer (e.g., 1984) is always assumed to be of
type int, unless it has an ‘L’ or ‘l’ suffi x, in which case it
is treated as a long. Also, a literal integer can be specifi ed
to be unsigned using the suffi x U or u. For example,

1984L 1984l 1984U 1984u 1984LU 1984ul

 Literal integers can be expressed in decimal, octal,
and hexadecimal notations. The decimal notation is the
one that has been used so far. An integer is taken to be
octal if it is preceded by a zero (0), and hexadecimal if it is
preceded by a 0x or 0X. For example,

92 /* decimal */
0134 /* equivalent octal */
0x5C /* equivalent hexadecimal */

Points to Note

In ANSI C, a decimal integer constant is treated as an
unsigned long if its magnitude exceeds that of the signed
long. An octal or hexadecimal integer that exceeds the
limit of int is taken to be unsigned; if it exceeds this limit,
it is taken to be long; and if it exceeds this limit, it is treated
as an unsigned long. An integer constant is regarded as
unsigned if its value is followed by the letter ‘u’ or ‘U’, e.g.,
0x9999u; it is regarded as unsigned long if its value is
followed by ‘u’ or ‘U’ and ‘l’ or ‘L’, e.g., OxFFFFFFFFul.

 A fl oating-point constant consists of an integer part,
a decimal point, a fractional part, and an exponent fi eld
containing an e or E followed by an integer. Both integer

62 Programming in C

and fractional parts are digit sequences. Certain portions of
this format may be missing as long as the resulting number
is distinguishable from a simple integer. For example,
either the decimal point or the fractional part, but not both,
may be absent. A literal real (e.g., 0.06) is always assumed
to be of type double, unless it has an ‘F’ or ‘f’ suffi x, in
which case it is treated as a fl oat, or an ‘L’ or ‘l’ suffi x, in
which case it is treated as a long double. The latter uses
more bytes than a double for better accuracy (e.g., 10 bytes
on the programmer’s PC). For example,

0.06F 0.06f 3.141592654L 3.141592654l

 In addition to the decimal notation used so far, literal
reals may also be expressed in scientifi c notation. For
example, 0.002164 may be written in scientifi c notation as

2.164E-3 or 2.164e-3

 The letter E (or e) stands for exponent. The scientifi c
notation is interpreted as follows.

2.164E-3 = 2.164 × 10–3

The following are examples of long long:
12345LL
12345ll

The following are examples of unsigned long long:
123456ULL
123456ull

 A character constant normally consists of a single character
enclosed in single quotes. Thus, for example, ‘b’ and ‘$’ are
both character constants. Each takes on the numeric value
of its character in the machine’s character set. Unless stated
otherwise, it will henceforth be assumed that the ASCII code is
used. This table is provided in Appendix A. Thus, for example,
writing down the character constant ‘A’ is equivalent to
writing down the hex value 41 or the octal value 101. The
‘A’ form is preferable, of course, fi rst, because its meaning
is unmistakable, and second, because it is independent of
the actual character set of the machine.
 In C, certain special characters, in particular, non-
printing control characters are represented by special, so-
called escape character sequences, each of which begins
with the special backslash (\) escape character. Most of
these escape codes are designed to make visible, on paper,
any of those characters whose receipt by a printer or
terminal causes a special, non-printing control action.
 Character constants can also be defi ned via their octal
ASCII codes. The octal value of the character, which may

be found from the table in Appendix A, is preceded by a
backslash and enclosed in single quotes.

char terminal_bell = ‘\07’;
/* 7 = octal ASCII code for beep */

char backspace = ‘\010’;
/* 10 = octal code for backspace */

 For ANSI C compilers, character constants may be defi ned
by hex digits instead of octals. Hex digits are preceded by x,
unlike 0 in the case of octals. Thus, in ANSI C

char backspace = ‘\xA’;

is an acceptable alternative declaration to

char backspace = ‘\010’;

 Any number of digits may be written but the value
stored is undefi ned if the resulting character value exceeds
the limit of char.
 On an ASCII machine both ‘\b’ and ‘\010’ are equivalent
representations. Each will print the backspace character.
But the latter form, the ASCII octal equivalent of ‘\b’,
will not work on an EBCDIC machine, typically an IBM
mainframe, where the collating sequence of the characters
(i.e., their gradation or numerical ordering) is different. In
the interests of portability it is therefore preferable to write
‘\b’ for the backspace character rather than its octal code.
Then the program will work as faultlessly on an EBCDIC
machine as it will on an ASCII.
 Note that the character constant ‘a’ is not the same as
the string “a”. A string is really an array of characters that
is a bunch of characters stored in consecutive memory
locations, the last location containing the null character; so
the string “a” really contains two chars, an ‘a’ immediately
followed by ‘\0’. It is important to realize that the null
character is not the same as the decimal digit 0, the ASCII
value of which is 00110000.
 A string constant is a sequence of characters enclosed
in double quotes. Whenever the C compiler encounters
a string constant, it stores the character sequence in an
available data area in memory. It also records the address
of the fi rst character and appends to the stored sequence
an additional character, the null character ‘\0’, to mark the
end of the string.
 The length of a character string is the number of
characters in it (again, excluding the surrounding double
quotes). Thus, the string “messagen” has a length of eight.
The actual number of stored characters is one more as a
null character is added.

Basics of C 63

 The characters of a string may be specifi ed using any
of the notations for specifying literal characters. For
example,
“Name\tAddress\tTelephone” /* tab-separated words */
“ASCII character 65: \101” /* ‘A’ specifi ed as ‘101’ */

 A long string may extend beyond a single line, in which
case each of the preceding lines should be terminated by a
backslash. For example,

 “Example to show \
 the use of backslash for \
 writing a long string”

 The backslash in this context means that the rest of the
string is continued on the next line. The preceding string is
equivalent to the single-line string

“Example to show the use of backslash for writing
a long string”

Points to Note

 A common programming error results from confusing a
single-character string (e.g., “A”) with a single character
(e.g., ‘A’). These two are not equivalent. The former con-
sists of two bytes (the character ‘A’ followed by the char-
acter ‘\0’), whereas the latter consists of a single byte.

 The shortest possible string is the null string (“ ”). It
simply consists of the null character. Table 2.9 summarizes
the different constants.

Table 2.9 Specifi cations of different constants

Type Specifi cation Example

Decimal nil 50

Hexadecimal Preceded by 0x or 0X 0x10

Octal Begins with 0 010

Floating constant Ends with f/F 123.0f

Character Enclosed within single quote ‘A’ ‘o’

String Enclosed within double quote “welcome”

Unsigned integer Ends with U/u 37 u

Long Ends with L/l 37 L

Unsigned long Ends with UL/w 37 UL

 C89 added the suffi xes U and u to specify unsigned
numbers. C99 adds LL to specify long long.
 More than one \n can be used within a string enabling
multi-line output to be produced with a single use of the
printf() function. Here’s an example.

int main()

{

 printf(“This sentence will \n be printed\nin\

 multi-line \n”);

 return 0;

}

 When the program was compiled and run it produced
the following output.

This sentence will
be printed
in multi-line

 However if the string is too long to fi t on a single line
then it is possible to spread a string over several lines by
escaping the actual new-line character at the end of a line
by preceding it with a backslash. The string may then
be continued on the next line as shown in the following
program:

int main()
{
 printf(“hello,\
 world\n”);
 return 0;
}

The output is
hello, world

 The indenting spaces at the start of the string continuation
being taken as part of the string. A better approach is to use
string concatenation which means that two strings which
are only separated by whitespaces are regarded by the
compiler as a single string. Space, newline, tab character
and comment are collectively known as whitespace. The
use of string concatenation is shown by the following
example.

int main()
{
 printf(“hello,” “world\n”);
 return 0;
}

2.12.4 Assignment

In the example (i) above we have used a statement :
int a=2,b=3;

Here both a and b assigned a value.
 The assignment operator is the single equal to sign (=).

	2. Basics of C
	2.12 Token
	2.12.1 Identifier
	2.12.2 Keywords
	2.12.3 Constant
	2.12.4 Assignment

