
TURING MACHINE ARCHITECTURE

What is a Turing machine?

A Turing machine is a hypothetical machine thought of by the mathematician Alan
Turing in 1936. Despite its simplicity, the machine can simulate ANY computer

algorithm, no matter how complicated it is!

It consists of an infinite tape, a tape head that can read and write symbols on the
tape, and a finite set of states with transition rules. The machine can move left or

right on the tape and change states based on the symbols it reads, allowing it to
perform calculations algorithmically.

Above is a very simple representation of a Turing machine. It consists of an

infinitely-long tape which acts like the memory in a typical computer, or any other
form of data storage. The squares on the tape are usually blank at the start and
can be written with symbols. In this case, the machine can only process the

symbols 0 and 1 and " " (blank), and is thus said to be a 3-symbol Turing machine.

At any one time, the machine has a head which is positioned over one of the

squares on the tape. With this head, the machine can perform three very basic
operations:

1. Read the symbol on the square under the head.

2. Edit the symbol by writing a new symbol or erasing it.

3. Move the tape left of right by one square so that the machine can read and
edit the symbol on a neighbouring square.

A simple demonstration

As a trivial example to demonstrate these operations, let's try printing the symbols

"1 1 0" on an initially blank tape:

First, we write a 1 on the square under the head:

Next, we move the tape left by one square:

Now, write a 1 on the new square under the head:

We then move the tape left by one square again:

Finally, write a 0 and that's it!

A simple program

With the symbols "1 1 0" printed on the tape, let's attempt to convert the 1s to
0s and vice versa. This is called bit inversion, since 1s and 0s are bits in binary.

This can be done by passing the following instructions to the Turing machine,
utilising the machine's reading capabilities to decide its subsequent operations on
its own. These instructions make up a simple program.

Symbol read Write instruction Move instruction

Blank None None

0 Write 1 Move tape to the right

1 Write 0 Move tape to the right

The machine will first read the symbol under the head, write a new symbol
accordingly, then move the tape left or right as instructed, before repeating the

read-write-move sequence again.

Let's see what this program does to our tape from the previous end point of the

instructions:

The current symbol under the head is 0, so we write a 1 and move the tape right

by one square.

(MOVING THE TAPE RIGHT IS EQUIVALENT TO MOVING THE
READ/WRITE HEAD TO THE LEFT)

The symbol being read is now 1, so we write a 0 and move the tape right by one
square:

Similarly, the symbol read is a 1, so we repeat the same instructions.

Finally, a 'blank' symbol is read, so the machine does nothing apart from read the
blank symbol continuously since we have instructed it to repeat the read-write-

move sequence without stopping.

In fact, the program is incomplete. How does the machine repeat the sequence

endlessly, and how does the machine stop running the program? The program
tells it with the concept of a machine state.

The machine state

To complete the program, the state changes during the execution of the program

on the machine must be considered. The following changes, marked in italics,
must be added to our table which can now be called a state table:

State Symbol read Write instruction Move instruction Next state

State 0 Blank None None Stop state

 0 Write 1 Move the tape to the right State 0

 1 Write 0 Move the tape to the right State 0

We allocate the previous set of instructions to a machine state, so that the
machine will perform those instructions when it is in the specified state.

After every instruction, we also specify a state for the machine to transition to. In

the example, the machine is redirected back to its original state, State 0, to repeat
the read-write-move sequence, unless a blank symbol is read. When the machine

reads a blank symbol, the machine is directed to a stop state and the program
terminates.

