

Table of Contents
What is Programming? .. 2

Some More Non-Technical Examples .. 2

The Natural Language of the Computer ... 3

What is a Programing Language? ... 4

What are Translators ... 4

Interpreters .. 5

Compilers .. 5

Compilation vs Interpretation .. 6

Hybrid Translators .. 8

Assemblers ... 8

Compilation Process in C .. 9

a. Pre-Processing .. 9

i. Comments Removal ... 9

ii. Macros Expansion ... 10

iii. File inclusion ... 10

b. Compiling .. 11

c. Assembling .. 12

d. Linking ... 13

Our First End to End Example .. 14

Flow Diagram of the Program ... 17

What is Programming?

A simple answer would be, “Programming is the act of instructing

computers to carry out certain tasks.” It is often referred to as coding

So then, what is a computer program?

A program is a sequence of instructions that tell a computer how to do a

task. When a computer follows the instructions in a program, we say it

executes the program. You can think of it like a recipe that tells you how

to make a peanut butter sandwich. In this model, you are the computer,

making a sandwich is the task, and the recipe is the program that tells

you how to execute the task.

Activity: Come up with a sequence of instructions to tell someone how to

make a peanut butter sandwich. Don't leave any steps out or put them in

the wrong order.

A computer in the definition above is any device that is capable of

processing code. These could be smartphones, ATMs, the Raspberry Pi,

and Servers to name a few.

Some More Non-Technical Examples

First, there are patterns in our everyday lives. The universe operates in a

somewhat predictable way; For example — day and night, seasons, sunrise

and sunset. People go through routines such as rising in the morning,

going to school or to work.

We get instructions from other people such as our superiors at work. How

we cook certain recipes can be explained in finite steps.

Second, every time we use smart devices, some code is running in the

background. Moving a mouse pointer from one part of your computer

screen to the other may seem like a simple task, but in reality, so many

lines of code just ran. An act as simple as typing letters into Google Docs

leads to lines of code being executed in the background. It’s all code

everywhere.

The Natural Language of the Computer

Machines have their natural language like humans do. Computers do not

understand the human language. The natural language of computers is

the binary code — 1 and 0. These represent two states: on (1) and off (0).

That is the natural language of electronic equipment. It would be hectic

for us as humans to communicate with the computer in binary.

Of course, computers don't understand recipes written on paper.

Everything that a computer does is implemented in this most basic of all

numbering systems—binary.

If you really wanted to tell a computer what to do directly, you'd have to

talk to it in binary, giving it coded sequences of 1s and 0s that tell it which

instructions to execute. However, this is nearly impossible. In practice, we

use a programming language.

What is a Programing Language?

To communicate with machines who speak binary, we do so in a language

that’s closer to our own natural language. Such as English, French, Swahili,

or Arabic. Programming languages are close to our natural languages. But

they are more structured and must be thoroughly learned.

They could be high-level or low-level languages. High-level programming

languages are farther away from the machine language than low-level

languages. This “farther away” is usually called an abstraction.

The computer needs a way to understand our human language. To do this,

we’ll need a translator.

What are Translators

Translators have the responsibility of converting your source code to the

machine language. This is also known as binary. Remember ones and

zeros. We may refer to the binaries as Object Code , the Program or a

common word today: App.

Translators can be any of:

• Interpreters

• Compilers

• A hybrid of Interpreters and Compilers

• Assemblers

Interpreters

Some languages are interpreted. The translator processes the source code

line by line and runs every line in the final program or app. This means

that interpreted source code starts running until it encounters an error.

Then the interpreter stops to report such errors. Python is a good example

of an interpreted programming language

Compilers

Compilers function differently. They convert the source code in its entirety

via a compilation process to binary. The binary is then executed. If there

were errors in the source code, they are detected during the compilation

time and flagged. This interrupts the compilation process, and no binary

is generated.

Interpreters translate line by line and execute the line before going on to

the next line. Compilers translate all lines of a program to a file (binary)

and execute the whole file.

Remember the definition of computer program? It’s a sequence of

instructions that is executed by a computer.

An executing program is usually called a process. Such programs use

certain resources on the computer system or smartphone such as memory,

disk space and the file system. An executing program can also be said to

be running.

Compilation vs Interpretation

A compiled program has to be modified into machine code before it is

used. The binary is then permanently stored. As an analogy, think of a

novel that was written in one language and then translated into another.

For example, the Harry Potter novels were written in British English, and

were then subsequently translated into 67 other languages,

including Hindi, Latvian, and Latin.

In much the same way, a computer program can be compiled (or

"translated") into machine code, and it may potentially be compiled into

different architectures (or "dialects") of machine code to suit different

computers. Each translation will be a unique version of the program, in the

same way that each translated book is a unique version of the original

novel.

To take the analogy further, if I was fortunate enough to have written the

first Harry Potter novel, it may be the case that I wouldn't understand the

language into which it is translated. Thus, I could be given the Latvian

version of the novel, and I could reasonably surmise that it tells the same

story as the British English one, but I would be unable to read it. In the

same sense, the version of my program that has been compiled into

machine code might be impossible for me to read: it is said to be

https://en.wikipedia.org/wiki/Harry_Potter
https://en.wikipedia.org/wiki/British_English
https://en.wikipedia.org/wiki/Hindi
https://en.wikipedia.org/wiki/Latvian
https://en.wikipedia.org/wiki/Latin

"machine-readable", in that the computer can understand it, but it is far

from easily readable for humans.

An interpreted program is stored in a human-readable form. When the

program is executed, an interpreter modifies the human-readable content

as it is run. This is analogous to the role that a human interpreter performs.

For example, rather than translating the British English version of Harry

Potter into Latvian and then providing the Latvian version to someone

who understands the language, (as per compilation), we could hire a

translator who knows both British English and Latvian.

The translator may choose to read each line from the British English novel,

translate each line (one at a time) into Latvian, and, as each line is

translated, relate it to the listener.

The computer interpreter performs the same function: it reads an

instruction in one programming language, translates it into machine code,

and then executes the machine code version. Once that instruction is out

of the way it moves along to the next, performing exactly the same task,

in much the same way that the interpreter of the Harry Potter novel would

move on to the next line once the first has been related.

There are advantages for both types of software development. As a

generalization, compiled programs are faster to run but slower to develop.

Compiled programs often run faster because the computer only needs to

execute the previously translated instructions. In interpreted languages,

every time the program is run the computer also needs to translate each

of the instructions. This translation causes a delay, slowing the execution

of the program.

On the other hand, interpreted languages are often written in a smaller

time frame, because the languages are simpler and the whole program

does not need to be compiled each time a new feature is bug tested.

Hybrid Translators

A hybrid translator is a combination of the Interpreter and Compiler. A

popular hybrid programming language is Java. Java first compiles your

source code to an intermediate format known as the Bytecode.

The Bytecode is then interpreted and executed by a runtime engine also

known as a Virtual machine. This enables the hybrid translators to run the

bytecode on various operating systems.

Assemblers

There’s the Assembler as well for translating low-level Assembly language

to binary.

Assembly language is easier to use than machine language. An assembler

is useful for detecting programming errors. Programmers do not have the

absolute address of data items. Assembly language encourage modular

programming.

Compilation Process in C

Compilation process in C involves four steps:

1. Preprocessing

2. Compiling

3. Assembling

4. Linking

a. Pre-Processing

Pre-processing is the very first step in the compilation process in C

performed using the pre-processor tool. All the statements starting

with # symbol in a C program are processed by the pre-processor and it

converts our program file into an intermediate file with no # statements.

Under pre-processing following tasks are performed:

i. Comments Removal

Comments in a C Program are used to give a general idea about a

particular statement or part of code, actually comments are the part of

code that are removed during the compilation process by the pre-

processor as they are not of particular use for the machine. The comments

in the below program will be removed from the program when the pre-

processing phase completes.

/* This is a

 multi-line comment in C */

#include<stdio.h>

int main()

{

 // this is a single line comment in C

 return 0;

}

ii. Macros Expansion

Macros are some constant value or an expression that are defined using

the #define directives in C Language. A macro call leads to the macro

expansion, the pre-processor creates an intermediate file where the

defined expressions or constants (basically matching tokens) are replaced

by some pre-written assembly level instructions. To differentiate between

the original instructions and the assembly instructions resulting from the

macros expansion, a '+' sign is added to every macros expanded

statement.

Macros Examples:

Defining a value

#define G 9.8

Defining an expression

#define SUM(a,b) (a + b)

iii. File inclusion

File inclusion in C language is addition of an another file containing some

pre-written code into our C Program during the pre-processing. It is done

using the #include directive. File inclusion during pre-processing causes

the entire content of filename to be added in the source code replacing

the #include<filename> directive and it creates a new intermediate file.

Example: If we have to use basic input/output functions like printf() and scanf() in our C
program, we have to include a pre-defined standard input output header file i.e. stdio.h.

#include <stdio.h>

b. Compiling

Compiling phase in C uses an inbuilt compiler software to convert the

intermediate (.i) file into an Assembly file (.s) having assembly level

instructions (low level code). To boost the performance of the program

compiler translates the intermediate file to make an assembly file.

Assembly code is a simple English type language and is used to write low

level instructions (in micro-controller programs we use assembly

language). The whole program code is parsed (syntax analysis) by the

compiler software in one go and it tells us about any syntax

errors or warnings present in the source code through the terminal

window.

The below image shows an example of how the compiling phase works.

c. Assembling

Assembly level code (.s file) is converted into a machine understandable

code (in binary/hexadecimal form) using an assembler. Assembler is a pre-

written program that translates assembly code into machine code, it takes

basic instructions from assembly code file and converts them into

binary/hexadecimal code specific to the machine type known as the object

code.

The file generated has the same name as the assembly file and is known

as an object file with an extension of .obj in DOS and .o in UNIX OS.

The below image shows an example of how the assembly phase works, an

assembly file area.s is translated to an object file area.o having same name

but different extension.

d. Linking

Linking is a process of including the library files into our program. Library

Files are some predefined files that contains the definition of the functions

in the machine language and these files have an extension of .lib. There

are some unknown statements written in the object (.o/.obj) file that our

operating system can't understand, you can understand this as a book

having some words that you don't know, you will use a dictionary to find

the meaning of those words, similarly we use Library Files to give meaning

to some unknown statements from our object file. Linking process

generates an executable file with an extension of .exe in DOS and .out in

UNIX OS.

The below image shows an example of how the linking phase works, we

have an object file having machine level code, it is passed through the

linker which links the library files with the object file to generate an

executable file.

Our First End to End Example
C program to display Hello World! on the output screen.

// Simple Hello World program in C

#include<stdio.h>

int main()

{

 // printf() is a output function which prints

 // the passed string in the output console

 printf("Hello World!");

 return 0;

}

OUTPUT:

Hello World!

This tiny Hello World! program has to go through several steps of the

compilation process to give us the output on the screen.

Explanation:

1. To compile the above code use this command in the terminal :

gcc hello.c -o hello

2. First, the pre-processing of our C Program begins, comments are

removed from the program, as there are no macros directives in

this program so macro expansion doesn't happen, also we have

included a stdio.h header file and during pre-processing,

declarations of standard input/output functions like printf(), scanf()

etc. is added in our C Program.

3. Now the during the compilation phase of our program, all the

statements are converted into assembly level instructions using the

compiler software.

4. Assembly level instructions for the above program (hello.s file) :

• You can get the above hello.s file using the command:

g++ -S hello.c in the terminal.

• hello.s file is converted into binary code using the assembler

program and generates an object file hello.obj in DOS

and hello.o in UNIX OS.

• Now, the linker adds required definitions into the object file using

the library files and generates an executable file hello.exe in DOS

and hello.out in UNIX OS.

• When we run hello.exe/hello.out, we get a Hello World! output

on the screen.

Flow Diagram of the Program

Let us look at the flow diagram of a program in the compilation process

in C:

• We have a C Program file with an extension of .c i.e. hello.c file.

• Step 1 is preprocessing of header files, all the statements starting

with # (hash symbol) and comments are replaced/removed during

the pre-processing with the help of a pre-processor. It generates an

intermediate file with .i file extension i.e. a hello.i file.

• Step 2 is compilation of hello.i file, compiler software translates

the hello.i file to hello.s file having assembly level instructions

(low level code).

• Step 3, assembly level code instructions are converted into a

machine understandable code (binary/hexadecimal form) by the

assembler and the file generated is known as the object file with an

extension of .obj/.o i.e. hello.obj/hello.o file.

• Step 4, Linker is used to link the library files with the object file to

define the unknown statements. It generates an executable file

with .exe/.out extension i.e. a hello.exe/hello.out file.

• Next, we can run the hello.exe/hello.out executable file to get the

desired output on our output window i.e. Hello World!.

