
Format String Attacks

The Format String exploit occurs when the submitted data of an input string is evaluated as a
command by the application. In this way, the attacker could execute code, read the stack, or cause
a segmentation fault in the running application, causing new behaviors that could compromise the
security or the stability of the system.

To understand the attack, it’s necessary to understand the components that constitute it.

•The Format Function is an ANSI C conversion function, like printf, fprintf, which converts a
primitive variable of the programming language into a human-readable string representation.

•The Format String is the argument of the Format Function and is an ASCII Z string which contains
text and format parameters, like: printf (“The magic number is: %d\n”, 1911);

•The Format String Parameter, like %x %s defines the type of conversion of the format function.

The attack could be executed when the application doesn’t properly validate the submitted input.
In this case, if a Format String parameter, like %x, is inserted into the posted data, the string is
parsed by the Format Function, and the conversion specified in the parameters is executed.
However, the Format Function is expecting more arguments as input, and if these arguments are
not supplied, the function could read or write the stack.

In this way, it is possible to define a well-crafted input that could change the behavior of the
format function, permitting the attacker to cause denial of service or to execute arbitrary
commands.

If the application uses Format Functions in the source-code, which is able to interpret formatting
characters, the attacker could explore the vulnerability by inserting formatting characters in a form
of the website. For example, if the printf function is used to print the username inserted in some
fields of the page, the website could be vulnerable to this kind of attack, as showed below:

printf (userName);

Following are some examples of Format Functions, which if not treated, can expose the
application to the Format String Attack.

Table 1. Format Functions

Format function Description

fprint Writes the printf to a file

printf Output a formatted string

sprintf Prints into a string

snprintf Prints into a string checking the length

Format function Description

vfprintf Prints the a va_arg structure to a file

vprintf Prints the va_arg structure to stdout

vsprintf Prints the va_arg to a string

vsnprintf Prints the va_arg to a string checking the length

Below are some format parameters which can be used and their consequences:

•”%x” Read data from the stack

•”%s” Read character strings from the process’ memory

•”%n” Write an integer to locations in the process’ memory

Example
#include <stdio.h>
void main(int argc, char **argv)
{
// This line is safe
printf("%s", argv[1]);

// This line is vulnerable
printf(argv[1]);}

Safe Code

The line printf("%s", argv[1]); in the example is safe, if you compile the program and run it:

./example "Hello World %s%s%s%s%s%s"

The printf in the first line will not interpret the “%s%s%s%s%s%s” in the input string, and the
output will be: “Hello World %s%s%s%s%s%s”

Vulnerable Code

The line printf(argv[1]); in the example is vulnerable, if you compile the program and run it:

./example "Hello World %s%s%s%s%s%s"

The printf in the second line will interpret the %s%s%s%s%s%s in the input string as a reference to
string pointers, so it will try to interpret every %s as a pointer to a string, starting from the location
of the buffer (probably on the Stack). At some point, it will get to an invalid address, and
attempting to access it will cause the program to crash.

Different Payloads

An attacker can also use this to get information, not just crash the software. For example, running:

./example "Hello World %p %p %p %p %p %p"

Will print the lines:

Hello World %p %p %p %p %p %p
Hello World 000E133E 000E133E 0057F000 CCCCCCCC CCCCCCCC CCCCCCCC

The first line is printed from the non-vulnerable version of printf, and the second line from the
vulnerable line. The values printed after the “Hello World” text, are the values on the stack of my
computer at the moment of running this example.

Also reading and writing to any memory location is possible in some conditions, and even code
execution.

	Example
	Safe Code
	Vulnerable Code
	Different Payloads

