
SQL Injection

What is SQL Injection (SQLi) and How to Prevent It

SQL Injection (SQLi) is a type of an injection attack that makes it possible to execute
malicious SQL statements. These statements control a database server behind a web
application. Attackers can use SQL Injection vulnerabilities to bypass application
security measures. They can go around authentication and authorization of a web
page or web application and retrieve the content of the entire SQL database. They
can also use SQL Injection to add, modify, and delete records in the database.

An SQL Injection vulnerability may affect any website or web application that uses an
SQL database such as MySQL, Oracle, SQL Server, or others. Criminals may use it to
gain unauthorized access to your sensitive data: customer information, personal
data, trade secrets, intellectual property, and more.

SQL Injection attacks are one of the oldest, most prevalent, and most dangerous web
application vulnerabilities. The OWASP organization (Open Web Application Security
Project) lists injections in their OWASP Top 10 2017 document as the number one
threat to web application security.

How and Why Is an SQL Injection Attack Performed

To make an SQL Injection attack, an attacker must first find vulnerable user inputs
within the web page or web application. A web page or web application that has an
SQL Injection vulnerability uses such user input directly in an SQL query. The
attacker can create input content. Such content is often called a malicious payload
and is the key part of the attack. After the attacker sends this content, malicious SQL
commands are executed in the database.

SQL is a query language that was designed to manage data stored in relational
databases. You can use it to access, modify, and delete data. Many web applications
and websites store all the data in SQL databases. In some cases, you can also use
SQL commands to run operating system commands. Therefore, a successful SQL
Injection attack can have very serious consequences.

 Attackers can use SQL Injections to find the credentials of other users in the
database. They can then impersonate these users. The impersonated user
may be a database administrator with all database privileges.

 SQL lets you select and output data from the database. An SQL Injection
vulnerability could allow the attacker to gain complete access to all data in a
database server.

 SQL also lets you alter data in a database and add new data. For example, in
a financial application, an attacker could use SQL Injection to alter balances,
void transactions, or transfer money to their account.

 You can use SQL to delete records from a database, even drop tables. Even if
the administrator makes database backups, deletion of data could affect

https://www.acunetix.com/blog/articles/injection-attacks/
https://www.acunetix.com/vulnerability-scanner/owasp-top-10-compliance/

application availability until the database is restored. Also, backups may not
cover the most recent data.

 In some database servers, you can access the operating system using the
database server. This may be intentional or accidental. In such case, an
attacker could use an SQL Injection as the initial vector and then attack the
internal network behind a firewall.

Simple SQL Injection Example

The first example is very simple. It shows, how an attacker can use an SQL Injection
vulnerability to go around application security and authenticate as the administrator.

The following script is pseudocode executed on a web server. It is a simple example
of authenticating with a username and a password. The example database has a
table named users with the following columns: username and password.

Define POST variables uname = request.POST['username'] passwd = request.POST['password']

SQL query vulnerable to SQLi

sql = “SELECT id FROM users WHERE username=’” + uname + “’ AND password=’” + passwd + “’”

Execute the SQL statement database.execute(sql)

These input fields are vulnerable to SQL Injection. An attacker could use SQL
commands in the input in a way that would alter the SQL statement executed by the
database server. For example, they could use a trick involving a single quote and set
the passwd field to:

password' OR 1=1

As a result, the database server runs the following SQL query:

SELECT id FROM users WHERE username='username' AND password='password' OR 1=1'

Because of the OR 1=1 statement, the WHERE clause returns the first id from
the users table no matter what the username and password are. The first user id in a
database is very often the administrator. In this way, the attacker not only bypasses
authentication but also gains administrator privileges. They can also comment out
the rest of the SQL statement to control the execution of the SQL query further:

-- MySQL, MSSQL, Oracle, PostgreSQL, SQLite

' OR '1'='1' --

' OR '1'='1' /*

-- MySQL

' OR '1'='1' #

-- Access (using null characters)

' OR '1'='1' %00

' OR '1'='1' %16

Example of a Union-Based SQL Injection

One of the most common types of SQL Injection uses the UNION operator. It allows
the attacker to combine the results of two or more SELECT statements into a single
result. The technique is called union-based SQL Injection.

The following is an example of this technique. It uses the web
page testphp.vulnweb.com, an intentionally vulnerable website hosted by Acunetix.

The following HTTP request is a normal request that a legitimate user would send:

GET http://testphp.vulnweb.com/artists.php?artist=1 HTTP/1.1Host: testphp.vulnweb.com

The artist parameter is vulnerable to SQL Injection. The following payload modifies
the query to look for an inexistent record. It sets the value in the URL query string
to -1. Of course, it could be any other value that does not exist in the database.
However, a negative value is a good guess because an identifier in a database is
rarely a negative number.

In SQL Injection, the UNION operator is commonly used to attach a malicious SQL
query to the original query intended to be run by the web application. The result of
the injected query will be joined with the result of the original query. This allows the
attacker to obtain column values from other tables.

GET http://testphp.vulnweb.com/artists.php?artist=-1 UNION SELECT 1, 2, 3 HTTP/1.1

Host: testphp.vulnweb.com

The following example shows how an SQL Injection payload could be used to obtain
more meaningful data from this intentionally vulnerable site:

GET http://testphp.vulnweb.com/artists.php?artist=-1 UNION SELECT 1,pass,cc FROM users WHERE uname='
test' HTTP/1.1

Host: testphp.vulnweb.com

How to Prevent an SQL Injection

The only sure way to prevent SQL Injection attacks is input validation and
parametrized queries including prepared statements. The application code should
never use the input directly. The developer must sanitize all input, not only web form
inputs such as login forms. They must remove potential malicious code elements
such as single quotes. It is also a good idea to turn off the visibility of database errors
on your production sites. Database errors can be used with SQL Injection to gain
information about your database.

If you discover an SQL Injection vulnerability, for example using an Acunetix scan,
you may be unable to fix it immediately. For example, the vulnerability may be in
open source code. In such cases, you can use a web application firewall to sanitize
your input temporarily.

How to Prevent SQL Injections (SQLi) – Generic Tips

Preventing SQL Injection vulnerabilities is not easy. Specific prevention techniques
depend on the subtype of SQLi vulnerability, on the SQL database engine, and on the
programming language. However, there are certain general strategic principles that
you should follow to keep your web application safe.

Step 1: Train and maintain awareness

To keep your web application safe, everyone involved in
building the web application must be aware of the risks
associated with SQL Injections. You should provide suitable
security training to all your developers, QA staff, DevOps, and
SysAdmins. You can start by referring them to this page.

Step 2: Don’t trust any user input

Treat all user input as untrusted. Any user input that is used in
an SQL query introduces a risk of an SQL Injection. Treat
input from authenticated and/or internal users the same way
that you treat public input.

Step 3: Use whitelists, not blacklists

Don’t filter user input based on blacklists. A clever attacker
will almost always find a way to circumvent your blacklist. If
possible, verify and filter user input using strict whitelists
only.

Step 4: Adopt the latest technologies

Older web development technologies don’t have SQLi
protection. Use the latest version of the development
environment and language and the latest technologies
associated with that environment/language. For example, in
PHP use PDO instead of MySQLi.

Step 5: Employ verified mechanisms

Don’t try to build SQLi protection from scratch. Most modern
development technologies can offer you mechanisms to
protect against SQLi. Use such mechanisms instead of trying
to reinvent the wheel. For example, use parameterized queries
or stored procedures.

	What is SQL Injection (SQLi) and How to Prevent It
	How and Why Is an SQL Injection Attack Performed
	Simple SQL Injection Example
	Example of a Union-Based SQL Injection
	How to Prevent an SQL Injection
	How to Prevent SQL Injections (SQLi) – Generic Tip
	Step 1: Train and maintain awareness
	Step 2: Don’t trust any user input
	Step 3: Use whitelists, not blacklists
	Step 4: Adopt the latest technologies
	Step 5: Employ verified mechanisms

