
A hash function H accepts a variable-length block of data M as input and

produces a fixed-size hash value h = H(M).

Module 4 : Integrity, Authentication and Digital Certificates

A hash function H accepts a variable-length block of data M as input and

produces a fixed-size hash value h = H(M).

A “good” hash function has the property that the results of applying the function

to a large set of inputs will produce outputs that are evenly distributed and

apparently random.

Module 3 : Hashes, Message Digests and Digital Certificates

A hash function H accepts a variable-length block of data M as input and

produces a fixed-size hash value h = H(M).

A “good” hash function has the property that the results of applying the function

to a large set of inputs will produce outputs that are evenly distributed and

apparently random.

In general terms, the principal object of a hash function is data integrity. A

change to any bit or bits in M results, with high probability, in a change to the

hash code.

Module 3 : Hashes, Message Digests and Digital Certificates

The kind of hash function needed for security applications is referred to as a

cryptographic hash function.

The kind of hash function needed for security applications is referred to as a

cryptographic hash function.

A cryptographic hash function is an algorithm for which it is computationally

infeasible to find either

(a) a data object that maps to a pre-specified hash result (the one-way property)

or

The kind of hash function needed for security applications is referred to as a

cryptographic hash function.

A cryptographic hash function is an algorithm for which it is computationally

infeasible to find either

(a) a data object that maps to a pre-specified hash result (the one-way property)

or

(b) two data objects that map to the same hash result (the collision-free

property).

Because of these characteristics, hash functions are often used to determine

whether or not data has changed.

Figure depicts the general operation of a cryptographic hash function. Typically, the input is padded out

to an integer multiple of some fixed length (e.g., 1024 bits), and the padding includes the value of the

length of the original mes

Applications of Cryptographic Hash Functions

To better understand some of the requirements and security implications for cryptographic hash

functions, it is useful to look at the range of applications in which it is employed.

Message authentication is a mechanism or service used to verify the integrity of a message. Message

authentication assures that data received are exactly as sent (i.e., contain no modification, insertion,

deletion, or replay).

In many cases, there is a requirement that the authentication mechanism assures that purported identity

of the sender is valid. When a hash function is used to provide message authentication, the hash function

value is often referred to as a message digest.

1. MESSAGE AUTHENTICATION

The sender computes a hash value as a function of the bits in the message and transmits both the

hash value and the message. The receiver performs the same hash calculation on the message bits

and compares this value with the incoming hash value. If there is a mismatch, the receiver knows that

the message (or possibly the hash value) has been altered .

A Common Scenario

The hash function must be transmitted in a secure

fashion. That is, the hash function must be

protected so that if an adversary alters or replaces

the message, it is not feasible for adversary to also

alter the hash value to fool the receiver.

This type of attack is shown in the figure . In this

example, Alice transmits a data block and attaches

a hash value. Darth intercepts the message, alters

or replaces the data block, and calculates and

attaches a new hash value.

Bob receives the altered data with the new hash

value and does not detect the change. To prevent

this attack, the hash value generated by Alice must

be protected

An Attack Scenario (MiTM)

How to Protect Hash Values from Attacks

How to Protect Hash Values from Attacks

a. The message plus concatenated hash code is encrypted using symmetric encryption.

Because only A and B share the secret key, the message must have come from A and has

not been altered. The hash code provides the structure or redundancy required to achieve

authentication. Because encryption is applied to the entire message plus hash code,

confidentiality is also provided.

How to Protect Hash Values from Attacks

b. Only the hash code is encrypted, using symmetric encryption. This

reduces the processing burden for those applications that do not

require confidentiality.

How to Protect Hash Values from Attacks

c. It is possible to use a hash function but no encryption for message authentication. The

technique assumes that the two communicating parties share a common secret value S. A

computes the hash value over the concatenation of M and S and appends the resulting

hash value to M. Because B possesses S, it can recompute the hash value to verify.

Because the secret value itself is not sent, an opponent cannot modify an intercepted

message and cannot generate a false message.

How to Protect Hash Values from Attacks

d. Confidentiality can be added to the approach of method (c) by

encrypting the entire message plus the hash code.

Message Authentication is achieved using a Message Authentication Code (MAC), also known as a

keyed hash function. Typically, MACs are used between two parties that share a secret key to

authenticate information exchanged between those parties.

Message Authentication is achieved using a Message Authentication Code (MAC), also known as a

keyed hash function. Typically, MACs are used between two parties that share a secret key to

authenticate information exchanged between those parties.

A MAC function takes as input a secret key and a data block and produces a hash value, referred to as

the MAC, which is associated with the protected message.

Message Authentication is achieved using a Message Authentication Code (MAC), also known as a

keyed hash function. Typically, MACs are used between two parties that share a secret key to

authenticate information exchanged between those parties.

A MAC function takes as input a secret key and a data block and produces a hash value, referred to as

the MAC, which is associated with the protected message.

If the integrity of the message needs to be checked, the MAC function can be applied to the message

and the result compared with the associated MAC value.

Message Authentication is achieved using a Message Authentication Code (MAC), also known as a

keyed hash function. Typically, MACs are used between two parties that share a secret key to

authenticate information exchanged between those parties.

A MAC function takes as input a secret key and a data block and produces a hash value, referred to as

the MAC, which is associated with the protected message.

If the integrity of the message needs to be checked, the MAC function can be applied to the message

and the result compared with the associated MAC value.

An attacker who alters the message will be unable to alter the associated MAC value without

knowledge of the secret key. Note that the verifying party also knows who the sending party is because

no one else knows the secret key.

Message Authentication is achieved using a Message Authentication Code (MAC), also known as a

keyed hash function. Typically, MACs are used between two parties that share a secret key to

authenticate information exchanged between those parties.

A MAC function takes as input a secret key and a data block and produces a hash value, referred to as

the MAC, which is associated with the protected message.

If the integrity of the message needs to be checked, the MAC function can be applied to the message

and the result compared with the associated MAC value.

An attacker who alters the message will be unable to alter the associated MAC value without

knowledge of the secret key. Note that the verifying party also knows who the sending party is because

no one else knows the secret key.

Note that the combination of hashing and encryption results in an overall function that is, in fact, a

MAC. That is, E(K, H(M)) is a function of a variable-length message M and a secret key K, and it

produces a fixed-size output that is secure against an opponent who does not know the secret key. In

practice, specific MAC algorithms are designed that are generally more efficient than an encryption

algorithm.

Another important application, which is similar to the message authentication

application, is the digital signature. The operation of the digital signature is

similar to that of the MAC.

2. DIGITAL SIGNATURES

Another important application, which is similar to the message authentication

application, is the digital signature. The operation of the digital signature is

similar to that of the MAC.

In the case of the digital signature, the hash value of a message is encrypted

with a user’s private key.

2. DIGITAL SIGNATURES

Another important application, which is similar to the message authentication

application, is the digital signature. The operation of the digital signature is

similar to that of the MAC.

In the case of the digital signature, the hash value of a message is encrypted

with a user’s private key.

Anyone who knows the user’s public key can verify the integrity of the message

that is associated with the digital signature.

2. DIGITAL SIGNATURES

Another important application, which is similar to the message authentication

application, is the digital signature. The operation of the digital signature is

similar to that of the MAC.

In the case of the digital signature, the hash value of a message is encrypted

with a user’s private key.

Anyone who knows the user’s public key can verify the integrity of the message

that is associated with the digital signature.

In this case, an attacker who wishes to alter the message would need to know

the user’s private key

2. DIGITAL SIGNATURES

a. The hash code is encrypted with

the sender’s private key. This

provides authentication. It also

provides a digital signature,

because only the sender could

have produced the encrypted hash

code. In fact, this is the essence of

the digital signature technique.

b. If confidentiality as well as a

digital signature is desired, then

the message plus the private-key-

encrypted hash code can be

encrypted using a symmetric

secret key. This is a common

technique.

Other Applications

Hash functions are commonly used to create a one-way password file. In this scheme a hash of a

password is stored by an operating system rather than the password itself. Thus, the actual password

is not retrievable by a hacker who gains access to the password file. In simple terms, when a user

enters a password, the hash of that password is compared to the stored hash value for verification.

This approach to password protection is used by most operating systems.

Hash functions can be used for intrusion detection and virus detection. Store H(F) for each file on a

system and secure the hash values (e.g., on a CD-R that is kept secure). One can later determine if a

file has been modified by recomputing H(F). An intruder would need to change F without changing H(F).

Properties of Hash Functions

There are 4 main properties of hash functions :-

1) It is quick to compute the hash value of any given number.

2) It is infeasible to generate a message from its hash value except by trying all the possible

combinations. (One Way Function)

3) A small change to a message should change the hash value so extensively that all the new hash

values appear uncorrelated to the old hash value. (Avalanche Effect)

4) It is infeasible to find two different messages with the same hash value. (Collision Resistance)

Message Digest 5 (MD 5)

MD 5 is quite fast and produces a 128 bit message digest.

Message Digest 5 (MD 5)

MD 5 is quite fast and produces a 128 bit message digest.

The input text is processed in 512 bit blocks (which are further divided into 16

32-bit sub blocks).

Message Digest 5 (MD 5)

MD 5 is quite fast and produces a 128 bit message digest.

The input text is processed in 512 bit blocks (which are further divided into 16

32-bit sub blocks).

The output of the algorithm is a set of four 32- bit blocks, which make up the 128

bit message digest.

Message Digest 5 (MD 5)

Working of MD 5

Step 1: Padding

The aim of this step is to make the length of the original message equal to a

value which is 64 bits less than an exact multiple of 512 bits.

For ex, if the length of the original message is 1000 bits, we add a padding of

472 bits to make the lenght if the message 1472 bits, because 1536= 512 x 3.

Also 1536 - 64 = 1472.

The padding consists of a single 1 bit followed by all 0 bits, as required.

Padding bits are always added even if the length is already 64 bits less than an

exact multiple of 512.

Message Digest 5 (MD 5)

Working of MD 5

Step 2: Append Length

After padding bits are added, the next step is to calculate the length of the

original message in terms of 64 bits (2^64), which is then appended at the end

of the (original msg + padding)

Message Digest 5 (MD 5)

Working of MD 5

Step 3: Divide the input into 512 bit blocks

Step 4: Initialise the chaining variables:

In this step, four variables (called chaining variables) are initialized. They are

called A,B,C and D.

Each of these is a 32 bit number. The initial hexadecimal values of the chaining

variables are as follows:

 A : 01 23 45 67 C : FE DC BA 98

B : 89 AB CD EF D : 76 54 32 10

Message Digest 5 (MD 5)

Working of MD 5

Step 5: Process Blocks:

After all the initializations, the real algorithm begins. There is a loop that runs for as many 512-bit

blocks as are follows:

5.1: Copy the 4 chaining variables into four corresponding variables a,b,c and d

A=a , B=b, C=c, D=d.

5.2: Divide the current 512 - bit blocks into 16 sub blocks. Thus, each sub-block contains 32 bits.

5.3: We have 4 ROUNDS. In each round, we process all the 16 sub-blocks belonging to a block.

The inputs to each round are

a) All the 16 sub blocks

b) The variables a,b,c,d

c) Some constant, designated as K.

Internal Operations of each Round

All the four rounds vary in one major way:

Step 1 of the four rounds has different processing.

The other steps an all the four rounds are the same.

In each round we have 16 input sub blocks named

M[0], M[1]...M[15].

Also T is an array of constants. it contains 64

elements, with each element consisting of 32 bits.

We denote it as K[0], K[1], ... K[63].

Since there are 4 rounds, we use 16 values out of K

in each round.

F(X,Y,Z) = (X and Y) or (not(X) and Z)

G(X,Y,Z) = (X and Z) or (Y and not(Z))

H(X,Y,Z) = X xor Y xor Z

I(X,Y,Z) = Y xor (X or not(Z))

Internal Operations of each Round

1. A Process F is first performed on b,c,d. This process is

different in all the 4 rounds.

Internal Operations of each Round

1. A Process F is first performed on b,c,d. This process is

different in all the 4 rounds.

2. The Variable a is added to the output of the process F.

Internal Operations of each Round

1. A Process F is first performed on b,c,d. This process is

different in all the 4 rounds.

2. The Variable a is added to the output of the process F.

3.The message sub-block M[i] is added to the output of step

2.

Internal Operations of each Round

1. A Process F is first performed on b,c,d. This process is

different in all the 4 rounds.

2. The Variable a is added to the output of the process F.

3.The message sub-block M[i] is added to the output of step

2.

4. The constant K[i] is added to the output of step 3.

Internal Operations of each Round

1. A Process F is first performed on b,c,d. This process is

different in all the 4 rounds.

2. The Variable a is added to the output of the process F.

3.The message sub-block M[i] is added to the output of step

2.

4. The constant K[i] is added to the output of step 3.

5. The output of step 4 is circularly left shifted by s bits.

Internal Operations of each Round

1. A Process F is first performed on b,c,d. This process is

different in all the 4 rounds.

2. The Variable a is added to the output of the process F.

3.The message sub-block M[i] is added to the output of step

2.

4. The constant K[i] is added to the output of step 3.

5. The output of step 4 is circularly left shifted by s bits.

6. The variable b is added to the output of step 5.

F(B,C,D) = (B and C) or (not(B) and D)

F(B,C,D) =(B and D) or (C and not(D))

F(B,C,D)= B xor C xor D

F(B,C,D)= C xor (B or not(D))

Internal Operations of each Round

1. A Process F is first performed on b,c,d. This process is

different in all the 4 rounds.

2. The Variable a is added to the output of the process F.

3.The message sub-block M[i] is added to the output of step

2.

4. The constant K[i] is added to the output of step 3.

5. The output of step 4 is circularly left shifted by s bits.

6. The variable b is added to the output of step 5.

7. The output of step 6 becomes the new b.

Internal Operations of each Round

1. A Process F is first performed on b,c,d. This process is

different in all the 4 rounds.

2. The Variable a is added to the output of the process F.

3.The message sub-block M[i] is added to the output of step

2.

4. The constant K[i] is added to the output of step 3.

5. The output of step 4 is circularly left shifted by s bits.

6. The variable b is added to the output of step 5.

7. The output of step 6 becomes the new b.

8. all other variables are right shifted by 1 position.

c=b, d=c, a=d.

